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Asthma
Fernando D Martinez, Donata Vercelli

Asthma is a heterogeneous group of conditions that result in recurrent, reversible bronchial obstruction. Although the 
disease can start at any age, the fi rst symptoms occur during childhood in most cases. Asthma has a strong genetic 
component, and genome-wide association studies have identifi ed variations in several genes that slightly increase the 
risk of disease. Asthma is often associated with increased susceptibility to infection with rhinoviruses and with changes 
in the composition of microbial communities colonising the airways, but whether these changes are a cause or 
consequence of the disease is unknown. There is currently no proven prevention strategy; however, the fi nding that 
exposure to microbial products in early life, particularly in farming environments, seems to be protective against 
asthma off ers hope that surrogates of such exposure could be used to prevent the disease. Genetic and immunological 
studies point to defective responses of lung resident cells, especially those associated with the mucosal epithelium, as 
crucial elements in the pathogenesis of asthma. Inhaled corticosteroids continue to be the mainstay for the treatment 
of mild and moderate asthma, but limited adherence to daily inhaled medication is a major obstacle to the success of 
such therapy. Severe asthma that is refractory to usual treatment continues to be a challenge, but new biological 
therapies, such as humanised antibodies against IgE, interleukin 5, and interleukin 13, off er hope to improve the 
quality of life and long-term prognosis of severe asthmatics with specifi c molecular phenotypes.

Introduction
Asthma is characterised by recurrent episodes of airway 
obstruction, which reverse either spontaneously or after 
use of medication, and is usually associated with 
bronchial hyper-responsiveness and evidence of chronic 
airway infl ammation. More elaborate defi nitions have 
been proposed and there is no clear consensus on how to 
defi ne asthma; fortunately, most cases are mild and are 
not diffi  cult to diagnose and treat by family doctors. 
However, at the more severe end of the asthma spectrum, 
comorbidities overlap with chronic obstructive pul-
monary disease (COPD), and refractoriness to available 
therapy make asthma troublesome and costly for health-
care systems.

A previous Seminar on asthma was published in 
The Lancet more than a decade ago.1 Here, we mainly 
review information emerging thereafter. During this 
period, there have been substantial advances in our 
understanding of the genetics, pathogenesis, and natural 
course of the disease, off ering great hope for the 
development of new, targeted therapies, particularly for 
severe asthma. For now, the main therapeutic method 
continues to be the so-called adrenal substance 
recommended for treatment of asthma by Solis-Cohen2 
in 1900, when he noted “It has…served to cut short a 
paroxysm… [and] been useful in averting the recurrence 

of paroxysms and in fi nally bringing about a state of 
freedom from fear of their recurrence.” As much can be 
said today for the available corticosteroids and beta-
adrenergic agonists, which are close relatives of the 
natural products contained in the Burroughs & 
Wellcome’s tablets (to be taken as 5 grains once daily, 
then twice, then three times daily) mentioned by 
Solis-Cohen.2

Epidemiology
Surveys based on questionnaire data, in which the 
disease is usually defi ned as current episodes of 
wheezing or a physician’s diagnosis, show that asthma 
aff ects 5–16% of people worldwide.3 Rates vary widely 
in diff erent countries,4 refl ecting diff erences in 
prevalence and in diagnostic standards. Prevalence 
increased markedly worldwide during the second half 
of the 20th century,5 but seems to have plateaued 
thereafter, particularly in countries with the highest 
asthma rates, such as the UK.6 An exception is the 
USA, where asthma prevalence increased from 7∙3% to 
8∙4% between 2001 and 2010,3 and continues to mainly 
aff ect children, African-Americans, and the poor; 
11∙2% of people with incomes lower than the poverty 
level had asthma, compared with 8∙7% for those with 
incomes up to twice the poverty level, and 7∙3% for 
those with higher incomes. Asthma-related hosp-
italisations and emer gency room visits remained stable 
in the USA from 2001–10, and mortality decreased 
slightly.3 There have been large increases in asthma 
expenditures in the USA, which were calculated at 
US$18 billion per year for adults alone in 2003–05.7 
Moreover, the costs of asthma medication as a 
proportion of total costs have substantially increased; 
in 1985, 57% of asthma expenditures were for 
emergency room visits and hospitalisations,8 whereas 
drug treatment now accounts for up to 75% of 
asthma costs.9
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Search strategy and selection criteria

Since roughly 51 000 articles have been published on asthma 
since 2002, when the last Lancet Seminar on the disease was 
published, we did a non-systematic review of articles 
published in English and collected by the authors. We 
searched PubMed, using the term “asthma”, from January, 
2002, to March, 2013. We gave priority to randomised 
controlled trials when available, to larger studies, and to 
articles published in high-quality journals. 
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Natural history
Knowledge of factors associated with the inception and 
progression of asthma has advanced substantially in the 
past few years, thanks to the availability of fi ndings from 
birth cohorts focused on these issues. In most cases, the 
fi rst symptoms of asthma occur during the preschool years,10 
and even among patients who develop chronic symptoms 
as young adults, higher rates of episodic wheezing and 
bronchial hyper-responsiveness are detected in early life.11 
Clinical expression patterns are established very early 
during the course of the disease; symptom severity and 
lung function defi cits track with age.12 The strongest 
predictor of continued and increasingly severe symptoms 
is chronic airfl ow limitation—ie, the presence of persistent 
bronchial obstruction not readily reversible with broncho-
dilators.13,14 Only a small proportion of patients with asthma 
have airfl ow limitation, and three distinct phases have 
been noted for the development of airfl ow limitation, as 
follows (fi gure 1): a prenatal phase, resulting in reduced 
lung function shortly after birth;15–18 a preschool phase 
(birth to age 5–7 years), resulting in delays in accelerated 
lung-function growth;17,19 and a third phase, probably 
lasting a lifetime, during which further losses occur at a 
slower rate.20,21 Although postnatally acquired airfl ow 
limitation is more likely to be seen in patients with 
recurrent, severe exacerbations,22 declines in lung function 
are not steeper in asthmatic individuals who smoke than 
in non-asthmatic smokers.21 Impaired lung function is 
associated with occupational asthma and exposure to air 
pollution,23,24 but it is unclear whether this exposure leads 
to irreversible airfl ow limitation.25,26

Many children have mild, transient, or sporadic 
episodes of airway obstruction that do not lead into 
chronic asthma, and several subphenotypes of child hood 
wheeze have been identifi ed.27,28 In wealthy societies, 
allergic sensitisation to many aeroallergens during 
preschool years is strongly associated with subsequent 
severe asthma and defi cits in lung-function growth.29 
Chronic asthma can also be highly prevalent in poorer 
countries,30 but the association with allergy markers is 
much less conspicuous or absent.31 Whether these 
fi ndings point to the presence of diff erent asthma patho-
genic mechanisms in diff erent communities, or support 
the notion that atopy is often consequence and not the 
cause of the disease is still unclear.

Genetics
Chips containing hundreds of thousands of common 
genetic variants have become widely available and have 
been used in genome-wide association studies (GWAS) to 
search for associations among thousands of asthma cases 
and controls (fi gure 2).32–37 These studies have reported 
evidence for the presence of asthma-related loci at or near 
genes for CHI3L1 (also known as YKL40), IL6R, and 
DENND1B on chromosome 1, IL1RL1–IL18R1 on chromo-
 some 2, PDE4D and RAD50–IL13 on chromo some 5, 
HLA-DQ on chromosome 6, IL33 on chromo some 9, 

SMAD3 on chromosome 15, ORMDL3–GSDMB on 
chromo some 17, IL2RB on chromo some 22, and 
PYHIN1 on chromosome 1 in African-Americans. For 
most of these loci, genes reported in one GWAS have not 
been replicated in other studies. An exception is 
ORMDL3–GSDMB, which has been repeatedly found to 
be associated with childhood but not adult asthma. 
For all loci, eff ects are weak, accounting for only a small 
proportion of the heritability of the disease. Loci associated 
with total IgE concentrations show very little overlap with 
those related to asthma,38 supporting the notion that atopy 
might not be a primary driver of susceptibility.39 A study 
of quantitative genetic scores of the combined eff ect of 
thousands of common single-nucleotide polymorphisms 
that individually have a weak infl uence on asthma risk 
suggested that asthma has a strong polygenic com-
ponent,32 which accords with previous fi ndings in studies 
of familial segregation of the disease.40

Taken together, studies of common genetic variants 
have yielded important new information on the mechan-
isms involved in pathogenesis of asthma, although the 
variants identifi ed have little prognostic utility. Recent 
reports in which gene exons were sequenced genome-
wide in thousands of individuals have suggested that rare 
genetic variants, seldom detected through GWAS chips, 
might have a larger eff ect than common variants on the 
heritability of complex diseases.41 The only study so far to 
have reported on resequencing of selected genes in 
patients with asthma yielded promising results,42 but 
these fi ndings need to be confi rmed and extended to the 
whole genome in much larger populations.

Environment: bacteria, viruses, and fungi
There has been a striking change in the emphasis of 
environmental studies of asthma in the past decade; the 
proportion of studies investigating protective factors 
has increased markedly compared with the number of 

Figure 1: Changes in lung function during the course of mild and 
moderate asthma
In mild disease, change in lung function is not substantially diff erent from that 
in people without asthma. In more severe asthma, defi cits have already been 
detected at birth, but most of the postnatal loss in lung function seems to occur 
during the preschool years.
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studies assessing factors that increase risk of the disease. 
The most infl uential studies were those in which children 
in advanced societies who were raised on farms were 
compared with those raised in the same rural com-
munities but away from farms, or those raised in cities.43,44 
These surveys consistently found that the protective 
eff ects of living on a farm are stronger if they occur in 
utero and during early life, that protection against asthma 
might be associated with microbial diversity, a hallmark 
of the farm environment, and that protective factors for 
asthma are diff erent from those for allergic sensitisation. 
A parallel fi nding is that exposure to day care in early life 
is associated with decreased risk of asthma during 
school years.45 Also, the microbial communities of house 
dust diff er signifi cantly depending on whether the 
household includes children exposed versus unexposed 
to day care.46

The specifi c environmental factors that account for 
these eff ects have not been identifi ed, but the most 
accepted hypothesis is that exposure to a range of mainly 

innocuous micro-organisms, largely bacteria, triggers 
protective responses in the developing immune system. 
Strong support for this hypothesis has come from studies 
with animals, which have shown that mice raised under 
germ-free conditions were more likely to develop 
experimental allergic asthma than animals exposed to 
normal microbial fl ora.47 After germ-free young mice were 
exposed to standard mouse-colony bacteria and intestinal 
microbiota were re-established, predisposition for asthma 
was reversed; this eff ect was not achieved in adult, germ-
free mice. Similarly, oral exposure to bacterial extracts 
protects animals against the development of experimental 
models of asthma.48,49 These studies suggest that exposure 
to environmental micro-organisms might aff ect asthma 
risk by modifying the type of bacteria that colonise the gut, 
and these changes could have profound eff ect on the risk 
for asthma and other diseases.50 These eff ects are prob ably 
activated through innate immune receptors such as 
TLR2,51 and might aff ect the development of responses 
mediated by several cell types, including basophils and 

Figure 2: Asthma genes identifi ed through genome-wide association studies (GWAS)
The National Human Genome Research Institute catalogue of published GWAS was searched using asthma as disease, and childhood asthma as trait.37
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natural killer cells,47 dendritic cells,49 and T-regulatory 
(Treg) cells.48

Susceptibility to asthma also seems to be associated 
with microbial colonisation of the airways. One study 
reported increased detection of pathogenic bacteria in the 
upper airway of infants who later developed asthma 
symptoms in preschool years, compared with those who 
did not.52 Metagenomic studies of samples obtained from 
the lower airways through bronchoscopy showed that, by 
contrast with long-held belief, microbial fl ora do colonise 
the bronchi in healthy individuals. However, the com-
position of the fl ora found to be colonising the upper 
airway was similar to that present in the lower airway;53 
thus, contamination via instruments used for the pro-
cedure cannot be excluded. Two studies in adult patients 
with asthma recruited from tertiary care centres showed 
predominance of Proteobacteria in the lower airways, a 
feature not seen in non-asthmatics.54,55 Similar pre-
dominance of Proteobacteria was found in adult patients 
with mild asthma, most of whom were not taking inhaled 
corticosteroids.56 It remains to be determined whether the 
microbes preferentially detected in people with asthma 
are directly involved in its pathogenesis, or are otherwise 
markers of an underlying, pre-existing change in the 
immune system in these patients.

Viruses, especially rhinovirus, are often isolated from 
the upper airways of patients with asthma during clinical 
exacerbations.57,58 Studies in which rhinovirus was 
experimentally inoculated into the airways convincingly 
showed that, compared with non-asthmatics, patients 
with asthma have increased susceptibility to developing 
chest symptoms when infected.59 Birth cohorts have 
shown that infants and young children who wheeze 
during episodes in which rhinoviruses were detected have 
a substantially higher risk than those who did not have 
rhinovirus-induced wheezing episodes as infants of 
having asthma during the school years.60,61 It is unknown 
whether this increased susceptibility to rhinovirus infec-
tion is a cause or consequence of asthma.62 In children 
with a strong family history of allergies, atopic sensitisation 
is more likely to occur before than after rhinovirus-
induced wheezing,63 suggesting that suscept ibility to the 
latter might be induced by allergy-related mechanisms. 
Whether children without a family history of allergies 
experience atopic sensitisation leading to rhinovirus 
susceptibility is unknown. Newborns and young infants at 
risk for subsequent development of asthma have been 
consistently found to have diminished interferon-γ 
responses to non-specifi c stimuli,64,65 and to have other 
changes in immune markers65 in peripheral blood cells. 
These changes could be a common ante cedent for allergic 
sensitisation and susceptibility to viral infection. In-vitro 
and ex-vivo studies in patients with asthma have shown 
defi cits in interferon type I and III responses by airway 
epithelial cells and macro phages,66,67 especially in patients 
with chronic airfl ow obstruction.68 Whether these defi cits, 
and subsequent increased susceptibility to acute airway 

obstruction, are the result of allergic sensitisation or 
develop independently is still to be determined.

Results of recent longitudinal studies have suggested 
that exposure to indoor mould, specifi cally Aspergillus 
ochraceus, Aspergillus unguis, and Penicillium variabile, 
during the fi rst year of life is positively associated with 
asthma incidence by age 7 years.69 Only a small proportion 
of participating children were allergic to moulds; thus, it 
is possible that mould induce asthma by non-allergic 
mechanisms. Activation of protease-activated receptors70 
and induction of eosinophilic infl ammation by fungal 
chitin71 have been proposed as potential mechanisms.

Pathogenesis
Over the past decade, understanding of asthma patho-
genesis has undergone a signifi cant shift. The 2002 Lancet 
Seminar1 on asthma presented the classic view that 
asthma is a T-helper-type-2 (Th2)-cell-dependent, IgE-
mediated allergic disease. This view was largely based on 
the observation that asthmatic patients are more likely to 
be sensitised to local aeroallergens.72 Moreover, the 
pathology of asthma (especially the most severe cases) is 
characterised by mucus-cell hyperplasia and infi ltration 
of infl ammatory cells, among which CD4+ T cells, 
eosinophils and mast cells predominate.73 Infi ltrating 
T cells express the signature Th2 cytokines interleukin 13, 
interleukin 4, and interleukin 5,74–76 which coordinately 
regulate many aspects of allergic infl am mation.77 More 
recently, this T-cell-centric paradigm has been enriched 
by the identifi cation of Treg cells with the capacity to 
control Th2 responses.78–80 A protective role of Treg cells 
in asthma is supported by the epidemiological and 
immunological studies in the farming families described 
above.81,82 In these popu lations, farm exposure is 
associated with increased number and function of cord 
blood Treg cells and lower Th2 cytokine secretion.83

In mouse models, Th2 infl ammation also promotes 
long-term airway remodelling with fi brosis and an 
increase in smooth muscle.77 Similarly, structural 
changes in the airways of asthmatic individuals con-
tribute to the development and progression of disease; in 
severe cases, airway obstruction from mucus-cell 
hyperplasia is common, the subepithelial basement 
membrane is thickened, smooth-muscle mass is 
increased through hypertrophy and hyperplasia, the air-
ways undergo fi brosis with increased deposition of 
connective tissue, and fi broblast and myofi broblast pro-
liferation occurs.84,85 It is unclear whether infl am mation 
precedes or coexists with airway remodelling, but 
remodelling can occur early in the disease, in some cases 
in the absence of infl ammation. Research has highlighted 
intriguing relationships between mechanical stress and 
airway remodelling in asthma.86 Activation of airway 
smooth muscle during bronchoconstriction abruptly 
changes airway size and mechanical stress within the 
airway wall. Airway epithelial cells, smooth-muscle cells, 
and fi broblasts respond to their mechanical environment. 

Christopher
Highlight

Christopher
Highlight



Seminar

1364 www.thelancet.com   Vol 382   October 19, 2013

The epithelium in particular transduces mechanical 
stresses, and in both fetal and mature airways, epithelial 
cells interact with mesenchymal cells to coordinate 
remodelling of tissue architecture in response to the 
mechanical environment.86–88 The ability of mechanical 
stress by itself to regulate airway structural changes 
might contribute to the dissociation between airway 
remodelling and infl ammation, and might also explain 
why patterns of fl uctuations in airway function seem to 
predict asthma exacerbations89,90 and loss of asthma 
control after withdrawal of inhaled corticosteroids.91

Despite the complexity of asthma pathogenesis, confi -
dence in the fundamental role of Th2 cells in asthma 
pathobiology has led pharmaceutical and biotechnology 
companies to develop new asthma treatments that target 
Th2 cytokines or their receptors. These therapies have 
consistently blocked Th2 infl ammation and associated 
structural changes in the airways of antigen-challenged 
animal models; however, few have been successful when 
moved to the clinic.85 Recent fi ndings might help explain 
these results. Phenotypic heterogeneity—probably a refl ec-
tion of the diverse genetic and environmental factors that 
underpin asthma pathogenesis—is an evolving con cept 
that has clinical implications.92 Early clinically-based 
defi nitions of asthma focused on two main pheno types; 
extrinsic asthma is defi ned as typically developing in 
childhood and accompanied by IgE-mediated allergic 

disease, whereas intrinsic asthma typically develops later 
in life and is not associated with allergic sensitisation. 
Concerns over the ability of these biased defi nitions to 
capture the diversity of asthma characteristics, and the 
continued lack of biomarkers for asthma phenotypes, 
prompted eff orts to develop alter native, unbiased strategies 
that sought to defi ne asthma phenotypes based on statis-
tical methods, such as cluster analysis93,94 and latent class 
analysis.95 Figure 3 shows results obtained using cluster 
analysis, a method that combines variables so that objects 
in the same group, or cluster, are more similar to each 
other than to those in other clusters. In a study of clinical 
phenotypes of adult asthma,93 clusters of patients were 
defi ned according to their relative expression of symptoms 
and eosinophilic infl ammation. Patients with greater 
discordance between symptoms and infl ammation were 
more diffi  cult to treat and required treatment in specialised 
asthma centres. Although the reasons for this discordance 
were unclear, measures of airway infl am mation in these 
subgroups were clinically informative; management 
aimed at reducing eosinophilic infl ammation was better 
than usual treatment in both discordant groups.

The results of unbiased studies of asthma phenotype are 
more similar than they are diff erent, even though the 
statistical methods and variables analysed are not the 
same. Moreover, results overlap with those obtained using 
earlier, biased phenotype approaches. All studies of asthma 
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Figure 3: Clinical phenotypes of adult asthma, identifi ed by cluster analysis93

Clusters of patients are plotted according to their relative level of symptoms and eosinophilic infl ammation. The plot highlights that patients with greater 
discordance between symptoms and infl ammation are more diffi  cult to treat and should usually be followed up in specialised asthma centres.
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phenotype found age at disease onset to be a crucial 
diff erentiating factor. Early-onset disease is consistently 
associated with a more allergic condition over a range of 
severities, whereas later-onset disease is associated with 
eosinophilic infl ammation and obesity, is more common 
in women, and is generally less allergic. Despite the 
association of early-onset disease with atopy and allergy, 
none of the unbiased approaches found variables 
associated with these conditions (such as atopy and total 
IgE) to be key distinguishing features of subgroups.92

An important step towards integrating asthma pheno-
types and pathogenesis was made by a 2009 analysis of 
molecular phenotyping in adult patients with mild, 
corticosteroid-naive asthma.96 Expression profi ling of 
bronchial biopsies identifi ed a Th2-high asthma pheno-
type that is detectable in around 50% of adults with 
asthma, and is marked by overexpression of interleukin-
13-dependent genes (ie, POSTN, CLCA1, and SERPINB2). 
Patients classifi ed as Th2-high were subsequently found 
to have higher amounts of tissue interleukin 13 and 
interleukin-5 mRNA, greater numbers of eosinophils and 
mast cells, and showed more atopy and thickening of the 
subepithelial basement membrane. These patients 
responded to inhaled corticosteroids, whereas the Th2-
low group did not.97 Moreover, asth matics with high 
serum concentrations of the interleukin-13-induced bio-
marker periostin were more likely than those with low 
concentrations of periostin to show improved lung 
function in response to anti-interleukin-13 treatment.98,99 
Although long-term studies are needed to assess the 
stability of these phenotypes, understand them in more 
detail, and further integrate them with relevant patho-
biology and appropriate biomarkers, these results suggest 
that combining clinical and molecular approaches might 
move us closer to the identifi cation of true asthma 
endotypes—ie, disease subtypes that are defi ned by 
distinct pathophysiological mechanisms and can be 
treated accordingly.100 The table presents an integrated 
view of major clinical and molecular asthma phenotypes 
with relevant pathobiology and biomarkers.

A truly modern view of asthma pathogenesis should 
also incorporate the notion that a Th2 cytokine signature 
might not simply refl ect an adaptive Th2 cellular 
response; thus, there might be more to asthma than Th2-
cell-dependent, IgE-mediated allergic infl ammation. 
Indeed, asthma is increasingly seen as a disease that has 
a strong innate immune component and begins at the 
airway epithelium. Far from being just a structural 
barrier, the airway epithelium responds to environmental 
insults such as protease-containing allergens, pathogens, 
cigarette smoke, and pollution by secreting infl ammatory 
mediators and antimicrobial peptides.101 Moreover, 
a damaged epithelium releases interleukin 25, inter-
leukin 33, and the cytokine protein TSLP, which acti-
vate natural-killer T cells, mast cells, eosinophils, and 
basophils, and stimulate newly discovered lineage-nega-
tive cells (ILC2, also known as natural type-2 helper cells 

or nuocytes).102–105 ILC2 cells require the transcription 
factor RORα for their development,106 reside in the 
mucosa, and respond to epithelial distress signals by 
rapidly releasing large amounts of Th2 cytokines (mainly 
interleukin 13 and interleukin 5).107,108 ILC2 are also 
activated by interleukin 33 released by alveolar macro-
phages during infl uenza virus infection,109 providing a 
common pathway for allergen-induced and virus-induced 
Th2-type responses. ILC2 have been shown to be 
necessary for allergic lung infl ammation in mice,110,111 
although their role in human asthma remains to be 
determined. These cells have been found in human fetal 
and adult lung tissue, and in human peripheral blood.112

The identifi cation of innate lymphoid cells that secrete 
Th2 cytokines in response to airway epithelial damage 
might fi ll a crucial gap in our understanding of asthma 
pathogenesis, by providing a long-sought link between 
Th2 infl ammation and lung-based mechanisms of disease 
initiation. The ability of these cells to produce interleukin 
13 and interleukin 5 is consistent with the classic cytokine 
signature of asthma, but emphasises the role of innate 
mechanisms in promoting adaptive Th2 responses. An 
altered epithelial barrier could allow the entry of otherwise 
innocuous antigens that, in the pro-Th2 milieu created by 
epithelium-activated innate type-2 cytokines, could 
promote Th2 diff erentiation eventually leading to IgE 
production. Continued stimulation of epithelial cells, 
smooth muscle cells, and fi broblasts by Th2-cell-derived 
and ILC2-derived interleukin 13 would lead to airway 
hyper-responsiveness and remodelling (fi gure 4). This 
updated view of asthma pathogenesis still emphasises the 
role of Th2 cytokines, but focuses on both their innate and 
adaptive cellular sources. Genetic evidence from GWAS 
has independently pointed to the importance of the 

Natural history Clinical and 
physiological features

Pathobiology and 
biomarkers

Response to therapy

Th2-high phenotype

Early-onset 
allergic

Early onset, 
mild to severe

Allergic symptoms and 
other diseases

Thick subepithelial 
basement 
membrane, specifi c 
IgE, Th2 cytokines

Corticosteroid-responsive, 
Th2-targeted

Late-onset 
eosinophilic

Adult onset, 
often severe

Sinusitis, less allergic Corticosteroid-
refractory, 
eosinophilia, 
interleukin 5

Responsive to antibody to 
interleukin 5 and cysteinyl 
leukotriene modifi ers, 
corticosteroid-refractory

Th2-low phenotype

Obesity-
related

Adolescent and 
adult onset

Women mainly 
aff ected, very 
symptomatic, airway 
hyper-responsiveness 
less clear

Lack of Th2 
biomarkers, 
oxidative stress

Responsive to weight loss, 
antioxidants, and possibly 
to hormonal therapy

Neutrophilic Adult onset Low FEV1, more air 
trapping

Sputum 
neutrophilia, Th17 
pathways, 
interleukin 8

Possibly responsive to 
macrolide antibiotics

Th2=T-helper-type-2 cytokine. FEV1=forced expiratory volume in 1 s.

Table: An integrated view of clinical and molecular asthma phenotypes92 
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epithelium–ILC2 axis in asthma pathogenesis by 
identifying IL33, the IL33 receptor IL1RL1 (ST2), TSLP, 
RORA, and IL13 as major asthma susceptibility genes.33,113

Cytokine profi les resembling a typical T-cell-derived, 
adaptive response but sustained by innate lymphoid cells 
are not limited to the Th2 type. A parallel system of cells 
lacks antigen receptors yet produces an array of eff ector 
cytokines (interferon γ, interleukin 17, and interleukin 22) 
that match the variety of cytokines secreted by subsets of 
T-helper cells. These cells function in lymphoid organo-
genesis, tissue remodelling, and antimicrobial immunity 
and infl ammation, particularly at barrier surfaces. Their 
ability to promptly respond to insults infl icted by stress-

causing microbes suggests these cells are crucial for 
fi rst-line immunological defenses.114 Changes in these 
innate mechanisms might also be involved in 
asthma pathogenesis, by contributing to lower airway 
vulnerability to otherwise innocuous respiratory tract 
viral infections, particularly those caused by rhinoviruses.

Prevention
There is currently no established strategy for primary 
prevention of asthma or for preventing the development 
of airfl ow limitation in patients with asthma. Avoiding 
exposure to house dust mite during pregnancy and early 
infancy had no eff ect on asthma outcomes by age 8 years 
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in Australia or the Netherlands.115,116 Two trials in which 
high-risk infants (defi ned by parental history of allergic 
disease) were randomly assigned to extensive en-
vironmental and dietary interventions or to usual care 
showed reductions in prevalence of asthma, as assessed 
by questionnaire, by age 18 years and age 7 years;117,118 
however, the generalisability of these results is limited by 
small numbers, highly selected populations, unfeasibility 
to mask the interventions, and losses to follow-up. 
The consistent protection against development of asthma 
seen with exposure to high microbial burden in early life 
has suggested the possibility that innocuous surrogates 
of such exposure could be used to prevent asthma,119 but 
no data is yet available to support this hypothesis.

Results of several trials have disproved the contention 
that chronic use of inhaled corticosteroids could block the 
natural course of asthma and the development of airfl ow 
limitation. 4 years of twice daily treatment with inhaled 
corticosteroids in school-age children with asthma had no 
eff ect on lung function or clinical outcomes 4 years after 
discontinuation of therapy.13 In preschool children with 
wheezing, administration of inhaled corticosteroids for 
several years and with diff erent methods had no eff ect on 
long-term, asthma-related outcomes.120–122

Treatment
The two most important aspects of asthma therapy are 
environmental control and pharmacological therapy. For 
severe asthma, treatment of comorbidities is also crucial. 
Most asthma trials have been done in developed countries. 
In less-developed countries, treatment of asthma faces 
many challenges, including underdiagnosis, access to 
care, ability of health-care workers to manage asthma, and 
availability and aff ordability of inhaled therapy.123 These 
obstacles might substantially increase asthma-associated 
morbidity and mortality in developing countries,124 but 
studies specifi cally addressing this issue are lacking.

Although there is consensus that environmental 
exposures are important causative agents in asthma, the 
role of environmental control and allergen avoidance in 
the treatment of asthma remains controversial. Even in 
cases of occupational asthma, where the off ending 
agent can often be directly identifi ed, only a third of 
patients show symptomatic recovery after cessation of 
exposure.25 A comprehensive environmental inter ven-
tion to reduce exposure to indoor allergens among 
children with asthma who live in inner cities, including 
reducing expo sure to cockroach and dust mite aller-
gens, resulted in reduced asthma-associated morbidity.125 
Data from adult studies are less convincing, with most 
studies showing that use of allergen-avoidance 
measures as a single intervention is clinically ineff ective 
in asthma management.126

Therapeutic approaches to mild and moderate asthma
Inhaled corticosteroids, with or without long-acting 
beta agonists (LABA), continue to be the mainstay of 

pharma cological treatment for mild to moderate asthma. 
When taken regularly, inhaled corticosteroids eff ectively 
control everyday asthma symptoms, improve lung 
function, and decrease the risk for exacerbations.127 
Controlled trials have consistently shown that inhaled 
corticosteroids are better than leukotriene receptor 
antagonists, such as montelukast, at controlling 
symptoms, improving lung function, and reducing 
exacerbations,128,129 yet results of a pragmatic trial, in 
which the study settings attempted to mirror those of 
usual medical practice, suggested that montelukast 
seems to be as eff ective as inhaled corticosteroids.130 In 
this real-life setting, adherence to once daily oral therapy 
was better than adherence to twice daily inhaled 
therapy,130 suggesting that adherence to inhaled therapy 
is a key obstacle to achieving success with asthma 
treatment. In community-based studies, adherence to 
such therapy can be as low as 20%. In well controlled 
trials, adherence is very high initially but wanes there-
after; several months into trials, participants do not take 
more than 50% of their prescribed doses.131 Evidence 
suggests that taking at least 75% of inhaled corticosteroid 
doses is necessary to attain the expected decrease in 
exacerbations.132 Although behavioural and other inter-
ventions have been proposed to increase medication 
adherence, results are not encouraging.133

Three approaches to improve or circumvent daily 
administration of asthma medicines have been proposed. 
Supervised therapy for children, in which use of inhaled 
corticosteroids was overseen by study staff  members 
each school day for 15 months, showed some improve-
ment in asthma outcomes,134 but the cost of such an 
approach would probably only make it worthwhile for 
severe cases. In patients with milder asthma, replacing a 
daily dose of inhaled corticosteroids with inhaled cortico-
steroids taken together with albuterol (salbutamol) 
whenever the latter is needed showed improved rates of 
asthma exacerbations compared with placebo, and 
similar exacerbation rates to those seen with daily inhaled 
corticosteroids.127,135 By contrast, a strategy based on 
doubling the daily dose of inhaled corticosteroids when 
asthma control deteriorates has proven ineff ective,136 
although quadrupling the dose showed some evidence of 
decreased exacerbation risk.137 Although the role of these 
as-needed approaches in asthma therapy remains 
controversial,138,139 it is well established that patients often 
have diff erent asthma control goals and diff erent views 
of the importance of medication side-eff ects than those 
of practitioners and in guidelines.140 Considering the 
patient’s perspective when developing treatment plans 
could help solve the conundrum of inhaled corticosteroids 
therapy—ie, that high effi  cacy in clinical trials is not 
matched by a similar improvement in community-based 
asthma outcomes.

Several clinical trials have shown that patients who are 
still symptomatic after treatment with inhaled cortico-
steroids benefi t from the addition of a LABA, and a larger 
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proportion of such patients respond better to adding 
LABAs than to doubling the dose of inhaled cortico-
steroids or adding a leukotriene receptor antagonist.129 In 
a small proportion of patients, reduced responsiveness to 
inhaled corticosteroids might be explained by cortico-
steroid resistance.141 For patients in whom exacerbations 
are a main source of morbidity, as-needed use of inhaled 
corticosteroids plus formoterol, a fast-onset LABA, has 
proven eff ective in preventing exacerbations.142 However, 
daily use of inhaled corticosteroids plus LABA is not 
better that inhaled corticosteroids alone in controlling 
exacerbations in inhaled-corticosteroid-naive patients.143 
Nevertheless, in more than 60% of asthma patients in the 
USA144 and in other countries,145 the inhaled corticosteroid 
formulation most widely used to treat asthma consists of 
an inhaled corticosteroid plus LABA, with inhaled 
corticosteroids alone being used by a smaller proportion 
of patients. A possible explanation for the excessive use of 
inhaled corticosteroids plus LABA combinations is 
insuffi  cient asthma control due to lack of adherence to 
inhaled corticosteroids, which could lead patients and 
practitioners to believe that taking inhaled cortic osteroids 
alone leads to an insuffi  cient response, warranting the 
addition of another medicine. This use of combination 
treatments over inhaled corticosteroids alone markedly 
increases drug costs,9 and could unneces sarily expose 
patients to rare but potentially deleterious side-eff ects of 
LABAs. Increased risk for severe asthma attacks and 
death has been reported in patients taking LABAs alone, 
and it is uncertain whether inhaled corticosteroids com-
pletely prevent such unwanted outcomes.146,147

These safety concerns have prompted the search for 
alternative add-on therapies in patients whose asthma is 
not well controlled with inhaled corticosteroids alone. In 
a 14-week crossover study, tiotropium, a long-acting 
anticholinergic agent approved for use in COPD when 
added to inhaled corticosteroids, showed similar clinical 
improvements to those obtained when salmeterol, a 
LABA, was added to inhaled corticosteroids, and greater 
improvements than those achieved with higher doses of 
inhaled corticosteroids.148 Larger and longer studies are 
needed to determine if this drug could be an eff ective 
alternative to LABAs.

Therapeutic approaches to severe asthma: targeted 
drugs on the horizon
Treatment for patients with severe asthma, who remain 
uncontrolled and have frequent exacerbations even with 
high-dose inhaled corticosteroids plus LABA or with oral 
corticosteroids, remains a signifi cant challenge. These 
patients account for a high proportion of the direct 
fi nancial costs of asthma, and this societal burden, added 
to the debilitating morbidity of severe asthma, justifi es 
continued eff orts to fi nd new treatments. A major shift 
in potential treatment approaches to severe asthma has 
come from advances in our understanding of disease 
pathogenesis. There is now clear evidence that severe 

asthma is heterogeneous, and unbiased hierarchical 
clustering methods have described several subphenotypes 
in adults and children.149 One hypothesis is that diff erent 
asthma subphenotypes have unique pathogenic mechan-
isms, and identifying such mechanisms could allow for 
more targeted and specifi c therapy.

Many patients with severe asthma, especially children, 
are highly atopic. Omalizumab, a humanised monoclonal 
antibody against IgE, decreased asthma exacerbations by 
30% in a large, inner city study of patients of all severities,150 
with eff ects being particularly strong in patients sensitised 
and exposed to cockroaches. In adults with severe asthma, 
omalizumab also decreased exacerbations, but had less 
impressive eff ects on everyday symptoms.151 High costs 
and unfeasibly large doses in patients with very high 
serum IgE concentrations limit the use of this drug.

The fi nding that several asthma subphenotypes had 
evidence of sputum eosinophilia94 and were prone to 
exacerbations suggested the possibility that humanised 
monoclonal antibodies against interleukin 5, the most 
potent eosinophil stimulant and chemoattractor, could 
have a role in preventing such exacerbations. A recent 
study supported this hypothesis; patients 12 years or 
older with severe asthma and direct or indirect evidence 
of eosinophilic infl ammation showed a substantial 
decrease in exacerbation rates with diff erent doses of 
mepolizumab, an anti-interleukin 5 antibody, compared 
with placebo.152 The eff ects were specifi c for exacerbations, 
the primary outcome, and there was no signifi cant 
improvement in measures of global asthma control or 
lung function.

The central role of interleukin 4 and interleukin 13 in 
the pathogenesis of some cases of asthma has also 
prompted studies using humanised monoclonal anti-
bodies against these cytokines and against the common 
component of their receptors, the inter leukin 4Rα chain. 
Although these studies have shown less impressive results 
than those with anti-interleukin 5 antibody, specifi c 
subgroups of patients did show benefi ts. For example, 
compared with patients with low concentrations, patients 
with high concentrations of serum periostin, a marker of 
interleukin 13 activation,153 showed larger improve ment in 
lung function when treated with lebrikizumab, a 
humanised monoclonal antibody to interleukin 13.99 
Similarly, those with more severe disease showed some 
clinical improvement after administration of AMG317, 
a monoclonal antibody against interleukin 4Rα.154

Therapies targeting other possible infl ammatory 
mediators have been developed, but none have shown 
clear evidence of clinical benefi t. Anti-tumour-necrosis-
factor α drugs are highly eff ective in other infl ammatory 
conditions but showed few clinical benefi ts and 
substantial unwanted eff ects in patients with severe 
asthma.155 Pharmacological advances have occurred in 
the development of phosphodiesterase-4 (PDE4) inhib-
itors, which are eff ective against neutrophilic infl am-
mation156 and could be eff ective in treatment of severe 
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asthma. Rofl umilast is an oral PDE4 inhibitor that has 
been shown to decrease allergen-induced infl am  ma tion157 
and is currently approved for use in severe COPD. 
However, PDE4 inhibitors cause frequent nausea, vomit-
ing, and diarrhoea, which limit their clinical usefulness. 
In summary, the development of therapies specifi cally 
targeted to infl ammatory pathways and mediators, 
identi fi ed by use of biomarkers, is the most promising 
approach to treatment of severe forms of asthma that are 
refractory to available treatment.

Severe asthma: thermoplasty
In patients with severe, refractory asthma, reduction of 
hypertrophied bronchial muscle might induce symptom 
relief and improvement in lung function. Bronchial 
thermoplasty, an outpatient procedure in which 
controlled thermal energy is applied in consecutive 
sessions through a bronchoscope, has been used with 
this goal in mind. A study that compared thermoplasty 
versus a control group without sham procedure showed 
benefi ts in exacerbation rates and symptoms; however, 
hospitalisation for adverse respiratory events was more 
frequent shortly after thermoplasty procedures than in 
the control group.158 A larger clinical trial, in which 
bronchial thermoplasty was compared with a sham 
procedure, showed modest improvements in asthma 
symptoms and exacerbations after treatment.159 Bronchial 
thermoplasty was approved for use in severe asthma by 
the US FDA in 2010, but it remains unclear whether its 
benefi ts outweigh its potential risks.160

Conclusions
There have been major advances in the past decade in 
our understanding of the genetics, natural history, and 
pathogenesis of the diverse clinical syndromes identifi ed 
as asthma. There is renewed hope that novel prevention 
strategies, and therapies targeted specifi cally against the 
mechanisms responsible for disease processes, will 
decrease the worldwide burden in health-care costs and 
morbidity caused by this still mysterious disease.
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